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Abstract. \Ye study the behaviour of the thermal conductivity for an ideal ultra-relativistic gas 
far from equilibrium by using information theory and the fluctuation-dissipation theorem in non- 
equilibrium steady states. We compare two different proposals for the nonlinear generalization 
of the Ructuation-dissipation theorem to the far-from-equilibrium regime. Both proposals lead 
to a saturation of lhe heat flux for high temperahxe gradients. but one of them is in better 
agreement with the expressions most often used in radiation hydrodynamics. 

1. Introducbion 

Information theory provides a useful tool for the analysis of the distribution function 
of macroscopic systems subjected to a given set of restrictions [1,2]. The best known 
applications of this method refer to systems in thermodynamic equilibrium, i.e. subjected 
to restrictions on such quantities as the mean energy and the mean number of particles. 
However, there is an increasing interest in using this method in the analysis of non- 
equilibrium steady states [3-8]; for instance, systems under constraints on the mean internal 
energy U and mean heat flux Q. To obtain information on the transport coefficients one 
should relate Q and VT, However, V T  does not appear in a natural way in the non- 
equilibrium distribution function when one requires U and Q, rather than U and V T ,  to 
have definite values. Nevertheless, one can obtain the transport coefficient, i.e. the thermal 
conductivity, by using the second moments of the fluctuations of the heat flux and the 
fluctuation-dissipation theorem (FDT). 

In full generality, one needs to know not only the second moments of the fluctuations of 
the flux but also their time correlation, i.e. one needs the evolution of the fluctuations. Here, 
we will deal with a simple illustration where it is assumed that the decay of the fluctuations 
is a simple exponential with a relaxation time that does not depend on the flux. Of course, 
this is an oversimplification but, even in this case, we will show that one may obtain non- 
trivial results. In this work, we shall focus our attention on the thermal conductivity of an 
ideal ultra-relativistic gas [SI and, by means of the FDT in non-equilibrium steady states, we 
shall obtain a flux-dependent thermal conductivity which leads to a saturation of the beat 
flux when the temperature gradient is large enough, by using two different extensions of 
the FDT. 

The FDT is a classical topic in modern non-equilibrium statistical mechanics [9, IO]. The 
best grounded formulation of the theorem corresponds to an analysis of transport coefficients 
ne& equilibrium, in the so-called linear response theory. The corresponding extension far 
from equilibrium, or, in other words, the nonlinear response theory, is a topic of current 
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development [ I  1-14], with many open problems. For instance, several ambiguities may 
appear in nonlinear situations. Since the ratio of the flux to the force is not a constant, but 
depends on the force itself, such a ratio will differ in principle from the differential transport 
coefficient defined as the derivative of the flux with respect to the force. Therefore, it has to 
be clarified which of them (the usual hansport coefficient Q / V T  or the differential transport 
coefficient a Q / a V T )  is related to the fluctuations of the flux. 

The plan of this article is as follows. In the second section we explore two posssible 
generalizations of the FDT to non-equilibrium states, and in the third section we use the 
results of information theory to obtain the corresponding values for the nonlinear thermal 
conductivity and we compare them with some of the expressions which are currently used 
in radiation hydrodynamics. 

D Jou and M Zakari 

2. Fluctuation-dissipation theorem 

The FDT [9-121 relates the transport coefficients with the time-correlation function of the 
fluctuations of dissipative fluxes. One of the best known formulations of the theorem is the 
so-called Green-Kubo relations for the transport coefficients, which, in the particular case 
of the thermal conductivity, reads [1&12] 

X(T) = - k L  Lm (SQ(t)SQ(0))qdt. (1) 

Here (. . .)5q stands for the equilibrium average, k is the Boltzmann constant and is the so- 
called reduced heat flux, which will be explicated below. A natural question to ask is how 
this relationship can be extended to situations far from equilibrium, and how can it yield 
a thermal conductivity dependent not only on temperature T but also on the temperature 
gradient V T  or, alternatively, on the heat flux Q. In particular, for an ultra-relativistic gas 
it is expected that A will depend on V T  in such a way that in the high V T  limit the heat 
flux remains finite and tends to the asymptotic value Q , ,  = uc, with U the internal energy 
density and c the speed of light. This limit to the heat flux, with its physical origin in the 
finite character of the speed of light, is known in radiation hydrodynamics as the flux limit 
problem [15-181. Of course, nonlinear response theory has received much attention, but 
usually these analyses have been either abstract and formal or applied to more complicated 
systems [ l l ,  121. 

Here, we will deal with this problem under simple assumptions which are, however, 
useful in understanding some problems arising in the nonlinear context. In this way, we 
assume an exponential decay for the fluctuations of Q, i.e. S&t) = Se(O)exp(-t/z) with 
the relaxation time r independent of Q. This simple hypothesis has often been made in 
recent thermodynamic formalisms 119-231, which have paid attention to the thermodynamic 
implications of relaxational extensions of hydrodynamical transport equations. In the 
simplifying hypothesis of exponential relaxation, ( I )  reduces to 

(2) 
5 

A = ~ @ Q ( O ) ~ ~ ( O ) ) q  

with S Q  the fluctuation of the subtracted heat flux, Q = Q - cu. In non-equilibrium 
situations, relation (2) could be naively generalized as 

CSQSQ)", 

[c2(SuSu) - ~ ( S U S Q )  + ( S Q S Q ) I n q  

Q 5  -- = - 
V T  kTZ 

kT2 
5 - _  - (3) 
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with (. . Jnq being an average over a non-equilibrium steady-state distribution function 
characterizing the physical situation under study. In our case, we will use the non- 
equilibrium distribution function (6) which will be discussed in the next section. 

A different version of the FDT [13,14], instead of (I) ,  relates the second moments of the 
fluxes to the differential transport coefficient BQ/aVT rather than to the usual conductivity 
A = - Q / V T ,  i.e. 

An expression analogous to this one (though more general &d abstract and written for the 
quantum case and valid only for Hamiltonian perturbations) was obtained in [ 141 by solving 
the yon Neumann equation for a system exposed to external perturbations and using the 
invariant part of the time-dependent density matrix to generalize the linear reponse theory 
to non-equilibrium states. We will comment further on this expression in the concluding 
section. In the hypothesis of an exponential decay of fluctuations, (4) reduces to 

Of course, since in the neighbourhood of equilibrium one has Q = -AVT, it follows that 
(3) and (5 )  are completely equivalent near equilibrium. 

For an ultra-relativistic gas under a heat flux, the distribution function very far from 
equilibrium is explicitly known [8] and it allows us to obtain the second moment of the 
fluctuations of U and Q around their mean values. We will resort to them to obtain the 
coefficient of thermal conductivity by using the above generalizations, (3) and (3, of the 
FDT to non-equilibrium steady states. 

3. Information theory 

The distribution function f for a system under the constraints of a given mean energy U and 
non-vanishing heat flux Q is, according to standard maximum entropy arguments [3-81, 

(6) 

where 8 is the Hamiltonian, Q the microscopic operator for the heat flux, and @ and I the 
Lagrange multipliers related respectively to the mean energy U = (8) and the mean heat 
flux Q = (4). 2 is a generalized partition function ensuring the normalization o f f .  For 
an ideal ultra-relativistic gas, H = E,, Put, Q = Em P,c&, with P, the modulus of the 
momentum of the a. particle (a. = 1,2, . . . , N )  and one obtains for Z ( @ ,  I )  the expression 

f = .Pexp(-j36 - IQ) 

with N the number of particles, h the Planck constant and V the volume of the system. 
From the definition of entropy 

S(u, Q) = -k f In ( f )d r  (8) s 
the Gibbs equation takes the generalized form 

ds = k@ du + kl d Q  (9) 
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where d r  is the element of volume in the phase space. The Lagrange multipliers have the 
explicit form [8] 
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B = T [ d s  - I] (10) 

with x E Q/Qo and Qo = cu the saturation heat flux. Note that in the limit of a vanishing 
heat flux, i.e. when x = 0, 0 reduces to T ,  the local-equilibrium temperature. and I tends 
to zero, so that one recovers, from (8), the classical Gibbs equations ds = T-’ du and the 
distribution function (6) takes the standard form of the canonical equilibrium distribution 
function. 

The second moments of the fluctuations of U and Q are given from a standard procedure 
as 

From expression (7) of the partition function, the latter set of fluctuations can be expressed 
as 

3N 4N c2I2(3p2 - c2I2) 
(SUSU)  = - 4 - 

,fP ,fP (@‘ -c212)2  

respectively. 

written as 
Introducing equations (13) into equation (3), the nonlinear thermal conductivity may be 

whereas in the approach of ( 5 )  we have 

(15) 
4 4 ~ l , 9 ~  - (B  + cZ)@’ + ~ ’ 1 ’ )  -- = -- 

BVT kT2 Bz (B - C l ) ( B  + C O 2  

a Q  3 N c 2 [ 1 - 3  

Since ,9 and I are complicated functions of T and Q, it is not easy to write Q explicitly in 
terms of V T .  Instead of that, in  figure 1 we plot Q/Qo against the temperature gradients 
obtained from (14) and (15). In either case Q/Qo  does increase linearly with V T  for small 
values of V T  but it asymptotically tends to Q/Qo = 1 in the limit of high V T .  

To decide which of the two relationships between Q and V T  is the more satisfactory, 
we compare our results with some well known expressions for the nonlinear h used in 
radiation hydrodynamics. In fact, several different forms of flux limiters are used in radiation 
hydrodynamics 1151; some of them are based on specific physical arguments (kinetic theory, 
for instance), whereas some others are purely ad hoc expressions. Here, we will take 
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Figure 1. Plot of Q/Qo against y = l V T / T .  For large temperature gmdienh all the curves 
tend 10 Saturation (Q = Qo). whereas in the limit of low VT, Fourier’s law is recovered. 

two different expressions for the flux limiter. One of them proposed by Levermore and 
Pomraning [16] is based on the kinetic theory of radiation: 

Y 

Here y = l ’ IVT/ /T ,  I’ is a coefficient with units of length and has the meaning of a 
mean-free path of order ct, and A0 is the thermal conductivity in the limit of low heat flux. 
Expression (16) has been obtained by a Chapman-Enskog approach from a flux-limited 
diffusion theory which starts from a transport equation for the specific intensity of radiation 
[16]. Other versions of flux limiters do not have a sound physical basis, but they are often 
in the analysis of astrophysical problems, used because of their simplicity. 

For instance, the nonlinear thermal conductivity is often written as a ratio of two simple 
polynomials [16-18]: 

6+3y 
= A o  (6 + 3 y  + P>. 

Another expression for the nonlinear thermal conductivity has been obtained [ 171 from the 
assumption that the density of the integrated frequency is isotropic in some inertial frame. 
This yields a relation between the thermal conductivity h and the dimensionless temperature 
gradient y given by the expressions 

where 8 is a parameter that changes between 0 and 1, yielding y = 0 for 8 = 0 and y = 00 

for 8 = 1. Thermodynamic arguments [24] yield the conclusion that this is the form of 
A(y) implied by thermodynamic arguments based on the existence of an entropy dependent 
on the first two moments of radiative distribution function. 
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The three flux limiters (16)-(18) behave as A + A0 when y + 0 and as Q = Qo when 
y -+ CO. In figure 1 we also plot Q/Qo as a function of y corresponding to equations 
(14x18). 

Inspection of figure 1 shows that the behaviour described by equation (15) is much 
closer to the fiux limiters (16) than that of equation (14). In fact, (15) yields a 
behaviour intermediate between the one described by kinetic theory in the Chapman-Enskog 
approximation and the practical expression (17), and it provides a better approximation to 
(16) than the ad hoc version (17). Note also that the curve based on (15) is very close 
to the curve obtained from the nonlinear thermal conductivity (18). whereas the curve 
obtained from (14) is too low to be acceptable. From this we conclude that Ichiyanagi's 
generalization of the FDT is more reliable than the naive extentions (3) of Kubo's equation, 
under the assumption of an exponential decay for the fluctuations. 

Let us finally point out that it is not surprising that our result does not coincide with 
the one obtained in kinetic theory. Indeed, neither our result nor the result (16) is an exact 
first-principles expression, but they are approximated expressions based on very different 
physical approaches. In fact, it is rather satisfactory that such different starting points lead 
to final results which are significantly similar. 

4. Conclusions 

It is seen that the results obtained from two possible versions of the "r, namely the 
direct extension of the Kubo formula for thermal conductivity (3) and the Ichiyanagi 
expression (5) for the differential transpon coefficient lead to a saturation for the heat flux 
in non-equilibrium steady state (equations (14) and (15) respectively) and that their general 
behaviour is rather similar. Comparison with the expressions for radiation hydrodynamics 
indicate that extension (5) is preferable to extension (3) of the fluctuation-dissipation 
expression to the nonlinear regime, because it yields a behaviour which is closer to the 
results given by the flux limiters used in radiation hydrodynamics. 

Let us also comment on the hypothesis that r does not depend on Q; although admittedly 
this is an oversimplification, it is not an internally inconsistent hypothesis. For instance, 
in the relaxation-time approximation of kinetic theory of gases, one often assumes kinetic 
equations of the form 

af - + v . V f  = -  
at 

1 
- 4 f  - fo) 
5 

with U the molecular velocity, f the distribution function and fo the local-equilibrium 
distribution. In this formalism, if one goes to the nonlinear order in the solution, one finds 
a nonlinear thermal conductivity A(T,  VT) in spite of the fact that 5 only depends on T 
and does not depend on V T  or Q. Note that in  this paper we have used, instead of the 
solution of (19), an expression for f based on maximum-entropy arguments. This is due 
to the fact that we need a solution that remains valid even very far from equilibrium, in 
highly nonlinear regimes in which solutions of kinetic equations are not easily available. 

The derivation of the fluctuation~issipation expression for the differential transport 
coefficient, analogous to (4). was based [I41 on a non-equilibrium Hamiltonian of the form 

H ( t )  = H - Aj E,(t) (20) 
j 

H being the Hamiltonian of the unperturbed system, Ej the external fields, for instance 
an electric field, and A, the operators of the system conjugate to the external fields. In 
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our case, no Hamiltonian is directly related to the perturbation. Instead, we have used an 
expression of the form (6), i.e. 

f - exp [ -p @ + $ I .  Q)] , 

Therefore, if follows that the expression ( - I / @ )  . Q plays the role of the E, AjEi in 
(20). In fact, according to extended irreversible thermodynamics, the quantity - I / p  may 
be identified 181 as rVB-', where t is the relaxation time and VB-' is the force conjugate 
to the heat flux. Thus, the non-equilibrium distribution (6) may be interpreted as giving an 
effective perturbed Hamiltonian describing the thermal perturbation due to the temperature 
gradient. 

It must also be pointed out that in [I41 the evolution and probability of the fluctuations 
are not exactly described by the same non-equilibrium Hamiltonian. To a certain extent, 
the inclusion of the effects of the non-vanishing Q in the statistics but not in the dynamics 
of the fluctuations in the present problem may be seen as a particular and very simplified 
consequence of this fact. 

Let us finally mention that, to the best of our knowledge, fluctuatiok-dissipation ideas 
have not been used in the context of the nonlinear thermal conduction in relativistic gases 
nor in the context of radiation hydrodynamics, so that this work may be regarded as a 
contribution to the study of flux limiters, the thermodynamic analysis of which has received 
fresh attention from the thermodynamic point of view in recent years [24,25]. 
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